今天是:

实验室资讯网

从“免费午餐”到“用者付费”,医疗影像AI们还要走多久?

实验室资讯网时间:2018-09-12 点击: 百度搜索

【导读】47岁,女性,肺结节检查。通过 人工智能 辅助诊断系统,医生确实能够检出一些更小的肺结节,有效降低漏诊的可能性。另外,在一定程度上,该系统提供的结节位置、大小、密度等信息对报告书写到诊断都提供了帮助。这一人工智能场景没有柯洁和AlphaGo的输赢之分,但让人看到了人工智能对 医疗 的赋......
TAG标签: 人工智能 AI 医疗影像 医疗影像AI 基层医疗

“47岁,女性,肺结节检查。通过人工智能辅助诊断系统,医生确实能够检出一些更小的肺结节,有效降低漏诊的可能性。另外,在一定程度上,该系统提供的结节位置、大小、密度等信息对报告书写到诊断都提供了帮助。”这一人工智能场景没有柯洁和AlphaGo的输赢之分,但让人看到了人工智能对医疗的赋能。

自人工智能在国内红火以来,医学影像AI这一细分赛道就已有众多玩家陆续加入,包括深睿医疗、依图科技、推想科技、汇医慧影、图玛深维等几十家创业公司,一度被认为是医疗AI最容易落地的领域之一,资本也对此抱有热切的期盼。据创投数据平台鲸准的数据显示,过去五年AI+医疗应用的创业项目共计完成86起融资,其中影像占31%,占比第一。但实际这些医疗影像AI企业开始盈利了吗?其落地场景是否明确?为何大多扎堆“肺结节”?现今发展的阻力又有哪些?

落地场景:医疗影像AI到底应该面向基层医院?还是三甲医院?

现今医疗影像AI企业大都喜欢向外宣称自家与三甲医院、顶级医院合作的数字。深睿医疗方面,其产品已进入200多家医院,大多是三甲医院;从汇医慧影官网上获悉,他们已经和国内700多家顶尖医院达成合作;据媒体报道称,图玛深维也已经和50家三甲医院展开合作。

这些数字的意义何在?医疗AI真正能发挥其价值的不应该是在基层医疗吗?在我国,医疗资源分布不均,基层医疗的优秀医疗人才严重匮乏,缺乏高科技医学设备,临床诊疗能力相对较弱。在日常诊疗过程中,基层医院误诊的情况也时有发生。相较之下,三甲医院不管从医疗设备还是医生资源来说都处于一个饱和状态,这类AI产品为何选择三甲医院?其生存空间在哪里?支付意愿不会很低吗?

对此,深睿医疗CEO乔昕表示,基层医疗确实更需要此类产品。不过,先让三甲医院的医生接受它,然后再让他们去影响基层,本身是这样的一个过程。

行业投资人也对亿欧大健康指出,企业与三甲医院的合作出于两方面的考虑:第一,有利于企业形成高质量的标注数据训练模型 ;第二,发挥顶级医院的标杆作用,对产品的品牌背书。现在的这些企业与医院是以科研合作和帮助科室建数据平台为主,落地的付费场景没明确,这是大家共同面对的问题。

事实上,现今没有付费场景的一大原因也在于现在的算法还不成熟,精确度还达不到对这个工具的期待,需要大量的数据去优化、去迭代。上海交通大学医学院附属同仁医院院长马骏曾在与亿欧大健康的交谈中表示,对于医疗AI,现在临床医生既抱着开放接受同时又感到麻烦的心态,因为该工具理想的状态是提高医生的工作效率,但现在真正能够提高效能的软件并不多。在与这些团队合作的过程中,专家和临床医生不但需要贡献他们的智慧,还有可能影响他们工作的效率。

产品:扎堆“肺结节”,医学影像AI等于肺结节筛查?

除开明确的付费场景外,在同类产品中脱颖而出也是产品商业化实现的重要因素之一。然而,在医学影像AI的领域,由于公开的数据集、肺结节便于观察等特性,几乎所有的企业都在扎堆做肺结节项目,就连人机协同“读片“的活动也大多以肺结节为例,产品是否过于同质化?

相关行业投资人认为,医学领域的诊断是综合询证的结果,任何一个疾病的诊断都是一个多维度多指标的过程,对于医疗影像AI来说,目前还达不到。所以企业不如先落地筛查,而且其运营项目的指标越单一越好。

而据了解,对于肺结节项目来说,其需要确诊的指标比较单一,又具备公开的数据集,那么,企业从肺结节切入倒也无可厚非。可肺结节项目这一块终究不能代表医学影像也不能代表整个人工智能医疗。

从产品这个角度,深睿医疗采取“两条腿“走路,在产品线上做全,技术上做深。推想科技方面,除开肺结节项目,脑卒中、心脏、骨折、腹部、乳腺等也有布局。据悉,汇医慧影开发的病种也包括胸部CT的防漏诊断、乳腺钼靶检测、脑出血核磁分析等。

另外,AI医疗公司大可不必把眼光局限在医疗影像领域。有相关人士认为,AI在疾病治疗、药物研发、健康管理方面也大有可为。

困境:阻碍医疗影像AI企业发展的瓶颈是什么?

对于医疗影像AI产品来说,其运用基础在于机器对海量数据的深度学习,没有数据,就算是“巧妇也难无米之炊”,这也是医疗影像AI企业一直以来面临的困境之一。

其实,企业面临的困境还不仅仅是数据量多少的问题,数据的质量也很关键。对于医生诊断来说,医疗数据之间是有关联性的,需要参考多方面的数据,但是获取完整的数据结构本身就非常困难。一方面,由于历史的原因,医院数据的保留本身就是不完整的。另一方面,一个完整的数据结构包括病史、家族史,再到治疗环节的资料,但是现在企业做不同的环节,集中于某一个数据库,数据链无法打通,完整的数据链也无法获取。

乔昕认为,对于医学影像AI企业来说,数据链的打通,是未来发展的一个方向、一个目标,而现在这个是企业发展最大的瓶颈。

此外,国家政策也是阻碍医疗影像AI企业发展的一大原因。根据2017年9月国家食药监总局发布的新版《医疗器械分类目录》,2018年8月1日起开始施行,其中出现了对此类人工智能软件的界定,这意味着医疗影像AI企业有了“持证上岗”的要求。

到目前为止,国家食药监总局给图玛深维、深睿、推想、点内等企业颁发了二类证,还没有出现获得三类证书的企业。也就是说,现在此类企业的产品仅具有辅助诊断功能,提供明确的诊断提示的产品需获得三类证,“小助手”类产品的需求自然远不及能够实际诊断的产品,最有价值的产品肯定还是在诊断环节。据悉,已有11家公司在联合相关部门制定三类医疗器械的检定标准,预计2019年将诞生第一批获得三类证的公司。

有行业人士指出,国家层面对此类产品的审批已在重视,但传统医疗场景对纯软件的诊断服务的收费模式还未被充分教育和接受,拿了证之后以什么形式收费?是否加入医院收费目录?这些问题都还不明确。

可以说,现在国内的医疗影像AI企业起步不久,还处在市场慢慢接受的阶段。但是随着技术渐趋成熟、企业落地的加快,行业“金标准”终将出现,免费试用时代的结束或就在不远的将来。

(本文来源:亿欧网 )

(责任编辑:子豪)

引用地址:

TAG标签: 人工智能 AI 医疗影像 医疗影像AI 基层医疗
顶一下
(1)
100%
踩一下
(0)
0%
免责声明: 除标明《实验室资讯网》原创外,本网部分文章转载自其它媒体,转载目的在于传递更多信息, 并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。 如其他媒体、网站或个人从本网下载使用,自负版权等法律责任。如涉及作品内容、版权和其它问题, 请在30日内与本网联系,我们将在第一时间删除内容!
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
推荐内容