今天是:

实验室资讯网

蓝牙无线技术的前世今生

实验室资讯网时间:2020-11-22 点击: 百度搜索 | 必应搜索 | 搜狗搜索

【导读】所谓蓝牙(Bluetooth)技术,实际上是一种短距离无线通信技术。 利用蓝牙技术,能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与Internet之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。 说得通俗一点,就是蓝牙技......
TAG标签: 蓝牙 Bluetooth 蓝牙无线技术

所谓蓝牙(Bluetooth)技术,实际上是一种短距离无线通信技术。

利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与Internet之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽道路。

蓝牙无线技术的前世今生

说得通俗一点,就是蓝牙技术使得现代一些轻易携带的移动通信设备和电脑设备,不必借助电缆就能联网,并且能够实现无线上因特网,其实际应用范围还可以拓展到各种家电产品、消费电子产品和汽车等信息家电,组成一个巨大的无线通信网络。

“蓝牙”这名称来自10世纪的丹麦国王哈拉尔德(Harald Gormsson)的外号。出身海盗家庭的哈拉尔德统一了北欧四分五裂的国家,成为维京王国的国王。由于他喜欢吃蓝莓,牙齿常常被染成蓝色,而获得“蓝牙”的绰号,当时蓝莓因为颜色怪异的缘故被认为是不适合食用的东西,因此这位爱尝新的国王也成为创新与勇于尝试的象征。1998年,爱立信公司希望无线通信技术能统一标准而取名“蓝牙”。

相关之一

一文读懂蓝牙技术从 1.0 到 5.0 的前世今生

深圳湾 2018-06-04 21:00

从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输,蓝牙应用的场景也越来越广。

世界是蓝色的,而不知不觉这个世界将有 40 亿蓝牙设备了。这篇文章,我们将带你一起回顾蓝牙 1.0 到 5.0 的技术变迁,从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输。我们还将和你一起梳理,越来越广阔的蓝牙应用的场景。关于蓝牙技术你所不知道的前世今生,都在这里了。(文末亦有彩蛋)

也许很少有人知道,蓝牙(Bluetooth)一词取自于十世纪丹麦国王哈拉尔的名字 Harald Bluetooth。

而将「蓝牙」与后来的无线通讯技术标准关联在一起的,是一位来自英特尔的工程师 Jim Kardach。他在一次无线通讯行业会议上,提议将「Bluetooth」作为无线通讯技术标准的名称。

蓝牙无线技术的前世今生

^ 蓝牙名称的想法来自英特尔的 Jim Kardach,他当时正在阅读有关维京人和哈拉尔国王的历史小说 | 图源:Nordicsemi

由于哈拉尔国王以统一了因宗教战争和领土争议而分裂的挪威与丹麦而闻名于世,国王的成就与 Jim Kardach 的理念不谋而合,他希望蓝牙也可以成为统一的通用传输标准——将所有分散的设备与内容互联互通。蓝牙的 LOGO 来自后弗萨克文的符文组合,将哈拉尔国王名字的首字母 H 和 B 拼在一起,成为了今天大家熟知的蓝色徽标。

蓝牙无线技术的前世今生

^ 图源:Fabrikbrands

当年的人们不会想到,20 年后这个蓝色徽标的应用范围已经远远超出他们所预想的使用场景。从利用无线耳机接收音频,把手柄连接到游戏主机,到使用苹果的「隔空投递」传输文件。蓝牙已经从当初的高科技卖点变成了现在移动设备的标配技术,成为了我们生活中不可或缺的一部分。

蓝牙的起源

蓝牙的历史实际上要追溯到第二次世界大战。蓝牙的核心是短距离无线电通讯,它的基础来自于跳频扩频(FHSS)技术,由好莱坞女演员 Hedy Lamarr 和钢琴家 George Antheil 在 1942 年 8 月申请的专利上提出。他们从钢琴的按键数量上得到启发,通过使用 88 种不同载波频率的无线电控制鱼雷,由于传输频率是不断跳变的,因此具有一定的保密能力和抗干扰能力。

起初该项技术并没有引起美国军方的重视,直到 20 世纪 80 年代才被军方用于战场上的无线通讯系统,跳频扩频(FHSS)技术后来在解决包括蓝牙、WiFi、3G 移动通讯系统在无线数据收发问题上发挥着关键作用。

蓝牙技术开始于爱立信在 1994 年创制的方案,该方案旨在研究移动电话和其他配件间进行低功耗、低成本无线通信连接的方法。发明者希望为设备间的无线通讯创造一组统一规则(标准化协议),以解决用户间互不兼容的移动电子设备的通信问题,用于替代 RS-232 串口通讯标准。

蓝牙无线技术的前世今生

^ 难忘当年的爱立信 | 图源:WIKI

爱立信发现,解决兼容问题的方法是将各种不同的通信设备通过移动电话接入到蜂窝网上,而这种连接的最后一段就是短距离的无线连接。随着项目的进展,爱立信把大量资源投入到短距离无线通讯技术的研发上。

1998 年 5 月 20 日,爱立信联合 IBM、英特尔、诺基亚及东芝公司等 5 家著名厂商成立「特别兴趣小组」(Special Interest Group,SIG),即蓝牙技术联盟的前身,目标是开发一个成本低、效益高、可以在短距离范围内随意无线连接的蓝牙技术标准。当年蓝牙推出 0.7 规格,支持 Baseband 与 LMP(Link Manager Protocol)通讯协定两部分。

1999 年先后推出 0.8 版、0.9 版、1.0 Draft 版。完成了 SDP(Service Discovery Protocol)协定和 TCS(Telephony Control Specification)协定。

1999 年 7 月 26 日正式公布 1.0A 版,确定使用 2.4GHz 频段。和当时流行的红外线技术相比,蓝牙有着更高的传输速度,而且不需要像红外线那样进行接口对接口的连接,所有蓝牙设备基本上只要在有效通讯范围内使用,就可以进行随时连接。

1999 年下半年,微软、摩托罗拉、三星、朗讯与蓝牙特别小组的五家公司共同发起成立了蓝牙技术推广组织,从而在全球范围内掀起了一股「蓝牙」热潮。

到 2000 年 4 月,SIG 的成员数已超过 1500,其成长速度超过任何其他的无线联盟。

蓝牙无线技术的前世今生

^ 蓝牙技术变迁历史 | 图源:BlueAPP

第一代蓝牙:关于短距离通讯早期的探索

1999 年:蓝牙 1.0

早期的蓝牙 1.0 A 和 1.0B 版存在多个问题,有多家厂商指出他们的产品互不兼容。同时,在两个设备「链接」(Handshaking)的过程中,蓝牙硬件的地址(BD_ADDR)会被发送出去,在协议的层面上不能做到匿名,造成泄漏数据的危险。

因此,当 1.0 版本推出以后,蓝牙并未立即受到广泛的应用。除了当时对应蓝牙功能的电子设备种类少,蓝牙装置也十分昂贵。

2001 年:蓝牙 1.1

蓝牙 1.1 版正式列入 IEEE 802.15.1 标准,该标准定义了物理层(PHY)和媒体访问控制(MAC)规范,用于设备间的无线连接,传输率为 0.7Mbps。但因为是早期设计,容易受到同频率之间产品干扰,影响通讯质量。

2003 年:蓝牙 1.2

蓝牙 1.2 版针对 1.0 版本暴露出的安全性问题,完善了匿名方式,新增屏蔽设备的硬件地址(BD_ADDR)功能,保护用户免受身份嗅探攻击和跟踪,同时向下兼容 1.1 版。此外,还增加了四项新功能:

AFH(Adaptive Frequency Hopping)适应性跳频技术,减少了蓝牙产品与其它无线通讯装置之间所产生的干扰问题;

eSCO(Extended Synchronous Connection-Oriented links)延伸同步连结导向信道技术,用于提供 QoS 的音频传输,进一步满足高阶语音与音频产品的需求;

Faster Connection 快速连接功能,可以缩短重新搜索与再连接的时间,使连接过程更为稳定快速;

支持 Stereo 音效的传输要求,但只能以单工方式工作。

蓝牙无线技术的前世今生

^ 代表作:爱立信第一台蓝牙手机 T39mc | 图源:WIKI

第二代蓝牙:发力传输速率的 EDR 时代

2004 年:蓝牙 2.0

蓝牙 2.0 是 1.2 版本的改良版,新增的 EDR(Enhanced Data Rate)技术通过提高多任务处理和多种蓝牙设备同时运行的能力,使得蓝牙设备的传输率可达 3Mbps。

蓝牙 2.0 支持双工模式:可以一边进行语音通讯,一边传输文档/高质素图片。

同时,EDR 技术通过减少工作负债循环来降低功耗,由于带宽的增加,蓝牙 2.0 增加了连接设备的数量。

2007 年:蓝牙 2.1

蓝牙 2.1 新增了 Sniff Subrating 省电功能,将设备间相互确认的讯号发送时间间隔从旧版的 0.1 秒延长到 0.5 秒左右,从而让蓝牙芯片的工作负载大幅降低。

另外,新增 SSP 简易安全配对功能,改善了蓝牙设备的配对体验,同时提升了使用和安全强度。

支持 NFC 近场通信,只要将两个内置有 NFC 芯片的蓝牙设备相互靠近,配对密码将通过 NFC 进行传输,无需手动输入。

蓝牙无线技术的前世今生

^ 代表作:正在以蓝牙与无线耳机沟通的 Sony Ericsson P910i PDA 手机 | 图源:WIKI

第三代蓝牙:High Speed,传输速率高达 24Mbps

2009 年:蓝牙 3.0

蓝牙 3.0 新增了可选技术 High Speed,High Speed 可以使蓝牙调用 802.11 WiFi 用于实现高速数据传输,传输率高达 24Mbps,是蓝牙 2.0 的 8 倍,轻松实现录像机至高清电视、PC 至 PMP、UMPC 至打印机之间的资料传输。

蓝牙 3.0 的核心是 AMP(Generic Alternate MAC/PHY),这是一种全新的交替射频技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。

功耗方面,蓝牙 3.0 引入了 EPC 增强电源控制技术,再辅以 802.11,实际空闲功耗明显降低。

此外,新的规范还加入 UCD 单向广播无连接数据技术,提高了蓝牙设备的相应能力。

蓝牙无线技术的前世今生

^ 代表作:蓝牙适配器 | 图源:未来世界网

第四代蓝牙:主推「 Low Energy」低功耗

2010 年:蓝牙 4.0

蓝牙 4.0 是迄今为止第一个蓝牙综合协议规范,将三种规格集成在一起。其中最重要的变化就是 BLE(Bluetooth Low Energy)低功耗功能,提出了低功耗蓝牙、传统蓝牙和高速蓝牙三种模式:

「高速蓝牙」主攻数据交换与传输;「传统蓝牙」则以信息沟通、设备连接为重点;「低功耗蓝牙」以不需占用太多带宽的设备连接为主,功耗较老版本降低了 90%。

BLE 前身是 NOKIA 开发的 Wibree 技术,本是作为一项专为移动设备开发的极低功耗的移动无线通信技术,在被 SIG 接纳并规范化之后重命名为 Bluetooth Low Energy(后简称低功耗蓝牙)。这三种协议规范还能够互相组合搭配、从而实现更广泛的应用模式。

蓝牙 4.0 的芯片模式分为 Single mode 与 Dual mode。Single mode 只能与蓝牙 4.0 互相传输无法向下与 3.0/2.1/2.0 版本兼容;Dual mode 可以向下兼容 3.0/2.1/2.0 版本。前者应用于使用纽扣电池的传感器设备,例如对功耗要求较高的心率检测器和温度计;后者应用于传统蓝牙设备,同时兼顾低功耗的需求。

此外,蓝牙 4.0 还把蓝牙的传输距离提升到100米以上(低功耗模式条件下)。拥有更快的响应速度,最短可在 3 毫秒内完成连接设置并开始传输数据。更安全的技术,使用 AES-128 CCM 加密算法进行数据包加密和认证。

蓝牙无线技术的前世今生

^ 代表作:苹果 iPhone 4S 是第一款支持蓝牙 4.0 标准的智能手机 | 图源:Quora

2013 年:蓝牙 4.1

蓝牙 4.1 在传输速度和传输范围上变化很小,但在软件方面有着明显的改进。此次更新目的是为了让 Bluetooth Smart 技术最终成为物联网(Internet of Things)发展的核心动力。

支持与 LTE 无缝协作。当蓝牙与 LTE 无线电信号同时传输数据时,那么蓝牙 4.1 可以自动协调两者的传输信息,以确保协同传输,降低相互干扰。

允许开发人员和制造商「自定义」蓝牙 4.1 设备的重新连接间隔,为开发人员提供了更高的灵活性和掌控度。

支持「云同步」。蓝牙 4.1 加入了专用的 IPv6 通道,蓝牙 4.1 设备只需要连接到可以联网的设备(如手机),就可以通过 IPv6 与云端的数据进行同步,满足物联网的应用需求。

支持「扩展设备」与「中心设备」角色互换。支持蓝牙 4.1 标准的耳机、手表、键鼠,可以不用通过 PC、平板、手机等数据枢纽,实现自主收发数据。例如智能手表和计步器可以绕过智能手机,直接实现对话。

2014 年:蓝牙 4.2

蓝牙 4.2 的传输速度更加快速,比上代提高了 2.5 倍,因为蓝牙智能(Bluetooth Smart)数据包的容量提高,其可容纳的数据量相当于此前的10倍左右。

改善了传输速率和隐私保护程度,蓝牙信号想要连接或者追踪用户设备,必须经过用户许可。用户可以放心使用可穿戴设备而不用担心被跟踪。

支持 6LoWPAN,6LoWPAN 是一种基于 IPv6 的低速无线个域网标准。蓝牙 4.2 设备可以直接通过 IPv6 和 6LoWPAN 接入互联网。这一技术允许多个蓝牙设备通过一个终端接入互联网或者局域网,这样,大部分智能家居产品可以抛弃相对复杂的 WiFi 连接,改用蓝牙传输,让个人传感器和家庭间的互联更加便捷快速。

蓝牙无线技术的前世今生

^ 历代蓝牙标准性能 | 图源:Android Authority

第五代蓝牙:开启「物联网」时代大门

2016 年:蓝牙 5.0

蓝牙 5.0 在低功耗模式下具备更快更远的传输能力,传输速率是蓝牙 4.2 的两倍(速度上限为 2Mbps),有效传输距离是蓝牙 4.2 的四倍(理论上可达 300 米),数据包容量是蓝牙 4.2 的八倍。

支持室内定位导航功能,结合 WiFi 可以实现精度小于 1 米的室内定位。

针对 IoT 物联网进行底层优化,力求以更低的功耗和更高的性能为智能家居服务。

蓝牙无线技术的前世今生

^ 低功耗版蓝牙与经典版蓝牙参数 | 图源:Android Authority

Mesh 网状网络:实现物联网的关键「钥匙」

Mesh 网状网络是一项独立研发的网络技术,它能够将蓝牙设备作为信号中继站,将数据覆盖到非常大的物理区域,兼容蓝牙 4 和 5 系列的协议。

传统的蓝牙连接是通过一台设备到另一台设备的「配对」实现的,建立「一对一」或「一对多」的微型网络关系。

而 Mesh 网络能够使设备实现「多对多」的关系。Mesh 网络中每个设备节点都能发送和接收信息,只要有一个设备连上网关,信息就能够在节点之间被中继,从而让消息传输至比无线电波正常传输距离更远的位置。

这样,Mesh 网络就可以分布在制造工厂、办公楼、购物中心、商业园区以及更广的场景中,为照明设备、工业自动化设备、安防摄像机、烟雾探测器和环境传感器提供更稳定的控制方案。

蓝牙无线技术的前世今生
蓝牙无线技术的前世今生

^ 办公楼里的 Mesh 网络 | 图源:Buletooth

物联网:未来蓝牙技术的新主场

自 1998 年来,蓝牙协议已经进行了多次更新,从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网数据传输。一方面维持着蓝牙设备向下兼容性,另一方面蓝牙也正应用于越来越多的物联网设备。

随着 Low Energy 版蓝牙在功耗和传输效率上的不断提升,Classic 版本自 3.0 后就更新不大。可以预见,未来蓝牙的主要发力点将集中在物联网,而不仅仅局限于移动设备,而 Mesh 网状网络的加入,使得蓝牙自成 IoT 体系成为可能。

据 SIG 的市场报告预估,到 2018 年底,全球蓝牙设备出货量将多达 40 亿,其中:手机、平板和 PC 今年出货量可达 20 亿,音频和娱乐设备出货量可达 12 亿,全球 86% 出厂的汽车将具备蓝牙功能,智能家居蓝牙设备出货量可达 6.5 亿,智能建筑、智慧城市、智慧工业等均将成为未来潜力赛道。

随着蓝牙 5 技术的出现和蓝牙 mesh 技术的成熟,大大降低了设备之间的长距离、多设备通讯门槛,为未来的 IoT 带来了更大的想象空间。这项 20 年前问世的技术,未来还会焕发出蓬勃的生命力。■

文末彩蛋:关注「深圳湾」微信公众号(ID: shenzhenware)回复「蓝牙」获得 2018 蓝牙市场报告。

相关之二

蓝牙无线技术的前世今生

2019-06-22

蓝牙已经是我们现在数码设备的一个必备模块,是一个近距离的无线的通信规范。蓝牙技术是爱立信的一个工程师发明的,发明蓝牙技术的技术人员需要一个有逼格高大上的名字,于是乎一个有文化的查询古籍找到一个名字叫 Harold Bluetooth 的丹麦国王,他堪比中国的秦始皇,统一丹麦的所有部落,和蓝牙的设计初衷正好一致,希望它可以统一不同设备的无线交流。

蓝牙的设计初衷是替代 RS232 电缆连接计算机外设,现在已经广泛用在形形色色的电子设备上实现短距离的无线连接,替代了我们的耳机线,手机数据线,键盘鼠标线(蓝牙键盘鼠标),打印机数据线等等。如果没有蓝牙,我们的桌子上就是这样的。

1、频率 :蓝牙的工作频率只有 2.4Ghz,和 Wi-Fi 的 2.4G 频段一样。但 Wi-Fi 还有其他频率如 5G/60G 等。

2、频道带宽和速率:蓝牙的频道带宽只有 1M 或 2M(BLE 版本),Wi-Fi 的至少是 20M 或更高。较窄的频道带宽限制的蓝牙的传输速率,频道带宽就像马路,越宽同时行驶的车辆才多,通信速率才能更高。Wi-Fi 可以达到上 Gps 的传输速率,蓝牙最新的标准才几十 Mbps。

蓝牙跳频还添加了 AFH(Adaptive Frequency-Hopping)技术,自适应跳频。可以在有 Wi-Fi 信号的情况下避开 Wi-Fi 的频率,提高抗干扰能力。

4、组网方式:组网方式是蓝牙和 Wi-Fi 的一个主要区别,蓝牙设计初衷是点对点连接(一个 master 一个 slave),Wi-Fi 是 server/client 方式。两个蓝牙设备默认可以直接连接,无需中间节点,连接速度快,Wi-Fi 则要麻烦的多,大多数设备默认 Infrastructure 模式,必须有中间节点做 AP,Wi-Fi 只有在 AD-HOC 模式下才是点对点的连接,配置相对繁琐。

5、功耗和传输范围:蓝牙的功耗相对低,传输距离近,尤其是 BLE。Wi-Fi 功耗普遍比较大,传输距离比蓝牙要远。

蓝牙版本和分类

蓝牙的早期:1.0-1.1 版本

蓝牙 1.2:增加了自适应跳频扩频(AFH),通过避免在跳频序列中使用拥挤的频率,提高了对射频干扰的抵抗。

蓝牙 2.0/2.1(+EDR):增加了增强数据率(EDR),它能够实现更快速的数据传输 .

蓝牙 3.0(+HS):提高理论速率到 24Mbps,增加了传输可靠性,只有标志“HS”的才支持。

蓝牙 4.0/4.1/4.2:增加低功耗功能,支持 IPv6。

蓝牙 5.0:是目前最新的版本,发布于 2016 年 6 月,增加了针对物联网的支持 ,导航功能,扩大传输距离等。

相关之三

蓝牙无线连接的两种可靠技术方式

知乎 伦茨科技

在提供可靠的数据通信方面,任何无线技术面临的最大挑战之一就是干扰。与有线数据通信技术不同,无线技术必须共享传输介质,并且多个设备可能会尝试在相同的无线频谱中,在相同的一般区域中以及在确切的时间进行通信。发生这种情况时,数据包之间会发生空中冲突,这可能会使数据包无法被接收设备读取并有效丢失。

蓝牙无线技术的前世今生

在非许可频谱频段(例如,全球ISM频段)中,这一挑战尤其如此,在该频段中,通信技术需要适应来自使用相同通信技术的其他设备以及使用在相同频带中运行的其他通信技术的设备的潜在干扰。

动态跟踪和避免嘈杂和繁忙的频道。

例如,蓝牙技术与Wi-Fi和使用IEEE 802.15.4标准的技术在相同的2.4 GHz ISM频段上运行。结果,如果两个蓝牙设备之间传输的数据包与在其他范围内的蓝牙,Wi-Fi或802.15之间恰好在相同时间和频率信道上传输的数据包发生冲突,则有可能被破坏或丢失。 4个设备。其他利用2.4 GHz频带的设备也会在环境中引起有害的电磁噪声,包括灯,微波炉,婴儿监视器和车库门开启器。

小而快速的数据包

在尝试避免碰撞时,最好小而快。对于E xample,W母鸡相比其他低-功率无线网状网络技术,蓝牙®数据包通常一半大小和4倍的速度。具有体积小,速度快的数据包能够更有效地利用频谱,并显著降低了PR碰撞obability。

蓝牙数据包很难被击中

蓝牙无线技术的前世今生

数据包所需的无线电广播时间越少,发生冲突的可能性就越低。蓝牙的小分组大小啮合和蓝牙无线电LE的高码元速率减少所需的容许通话时间的分组和装置,其蓝牙网状网络在这方面很好经历。

但是蓝牙数据包不仅具有大小和速度。他们也擅长避免冲突。

自适应跳频

扩频技术可以在繁忙的无线电环境中提高无线技术的弹性,在繁忙的无线电环境中更容易发生冲突和干扰。自适应跳频是蓝牙技术用来避免干扰的独特扩频技术。

为了了解自适应跳频的工作原理,它有助于研究蓝牙技术如何划分2.4 GHz ISM频段。首先,像许多无线通信协议一样,蓝牙技术使用多个无线电信道。低功耗蓝牙将2.4GHz ISM无线电频段划分为40个通道,而蓝牙BR / EDR将其划分为80个通道。

蓝牙技术还希望在传输通道之间跳跃,以进一步降低与其他范围内传输发生冲突的可能性。跳频释放了更多的消息无线容量,使通信更加可靠。跳频不一定是蓝牙技术独有的。但是接下来会发生什么。

自适应跳频为跳频增加了智能,并使蓝牙数据包能够适应避免活动,拥塞的信道。嘈杂和忙碌的频道会被标记而不使用。随着环境中其他无线通信设备和噪声的出现和消失,可靠信道和繁忙信道的列表可能会快速变化。自适应跳频使蓝牙技术可以动态跟踪哪些信道运行最佳,并找到最可靠的路径。

蓝牙数据包避免冲突

蓝牙无线技术的前世今生

(本文来源:综合百度百科)

(责任编辑: 龙景)

引用地址:

TAG标签: 蓝牙 Bluetooth 蓝牙无线技术
顶一下
(0)
0%
踩一下
(0)
0%
免责声明: 除标明《实验室资讯网》原创外,本网部分文章转载自其它媒体,转载目的在于传递更多信息, 并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。 如其他媒体、网站或个人从本网下载使用,自负版权等法律责任。如涉及作品内容、版权和其它问题, 请在30日内与本网联系,我们将在第一时间删除内容!
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
推荐内容